拨开荷叶行,寻梦已然成。仙女莲花里,翩翩白鹭情。
IMG-LOGO
主页 文章列表 洗掉资料框中列的每个因素的例外值

洗掉资料框中列的每个因素的例外值

白鹭 - 2022-02-28 2169 0 0

我有下面的资料框,我想为Area我的资料框列的每个因素查找并洗掉例外值通常这些因素大于 2。因此,我想要新的资料框,每个因素都没有例外值。

    subs<-structure(list(Sold_Pr = c(6500, 173000, 60000, 73000, 155000, 
105000, 140000, 39900, 73500, 46000, 99900, 180000, 164000, 120000, 
206000, 160000, 67400, 215000, 145000, 175000, 350000, 425000, 
435000, 490000, 545000, 585000), Area = structure(c(1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("411", "415", "981", 
"8001", "8002", "8003", "8004", "8005", "8006", "8007", "8008", 
"8009", "8010", "8011", "8012", "8013", "8014", "8015", "8016", 
"8017", "8018", "8019", "8020", "8021", "8022", "8023", "8024", 
"8025", "8026", "8027", "8028", "8029", "8030", "8031", "8034", 
"8035", "8037", "8038", "8039", "8040", "8041", "8042", "8043", 
"8044", "8045", "8046", "8047", "8048", "8049", "8050", "8051", 
"8052", "8053", "8055", "8056", "8057", "8058", "8059", "8060", 
"8061", "8062", "8063", "8064", "8065", "8066", "8067", "8068", 
"8069", "8070", "8071", "8072", "8073", "8074", "8075", "8076", 
"8077"), class = "factor"), Closed_Date = structure(c(18668, 
18933, 18716, 18740, 18639, 18845, 18708, 18676, 18733, 18695, 
18715, 18709, 18794, 18803, 18750, 18787, 18906, 18810, 18855, 
18870, 18626, 18786, 18808, 18864, 18961, 18914), class = "Date")), row.names = c(NA, 
-26L), class = c("tbl_df", "tbl", "data.frame"))

remove_outliers <- function(x, na.rm = TRUE, ...) {
  qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...)
  H <- 1.5 * IQR(x, na.rm = na.rm)
  y <- x
  y[x < (qnt[1] - H)] <- NA
  y[x > (qnt[2]   H)] <- NA
  y
}

uj5u.com热心网友回复:

您可以更改功能在回传逻辑值,并利用它们filtergroup_by-

library(dplyr)

remove_outliers <- function(x, na.rm = TRUE, ...) {
  qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...)
  H <- 1.5 * IQR(x, na.rm = na.rm)
  !(x < (qnt[1] - H) | x > (qnt[2]   H))
}

subs %>%
  group_by(Area) %>%
  filter(remove_outliers(Sold_Pr)) %>%
  ungroup

uj5u.com热心网友回复:

您可以使用ave. 对于截止值的计算,您可以使用mapply

remove_outliers <- \(x, g, na.rm=TRUE, ...) {
  q <- \(z) {
    qnt <- quantile(z, probs=c(.25, .75), na.rm=na.rm, ...)
    H <- 1.5 * IQR(z, na.rm=na.rm)
    r <- mapply(` `, qnt, c(-H, H))
    z > r[1] & z < r[2]
  }
  return(as.logical(ave(x, as.character(g), FUN=q)))
}

subs[26, 1] <- 1e9  ## fabricate outlier

with(subs, remove_outliers(Sold_Pr, Area))
# [1]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
# [14]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE

应用于子集

subs[with(subs, remove_outliers(Sold_Pr, Area)), ]
#    Sold_Pr Area Closed_Date
# 1     6500  411  2021-02-10
# 2   173000  411  2021-11-02
# 3    60000  411  2021-03-30
# 4    73000  411  2021-04-23
# 5   155000  411  2021-01-12
# 6   105000  411  2021-08-06
# 7   140000  411  2021-03-22
# 8    39900  411  2021-02-18
# 9    73500  411  2021-04-16
# 10   46000  411  2021-03-09
# 11   99900  411  2021-03-29
# 12  180000  411  2021-03-23
# 13  164000  411  2021-06-16
# 14  120000  411  2021-06-25
# 15  206000  411  2021-05-03
# 16  160000  411  2021-06-09
# 17   67400  411  2021-10-06
# 18  215000  411  2021-07-02
# 19  145000  411  2021-08-16
# 20  175000  411  2021-08-31
# 21  350000  415  2020-12-30
# 22  425000  415  2021-06-08
# 23  435000  415  2021-06-30
# 24  490000  415  2021-08-25
# 25  545000  415  2021-11-30

注: R 版本 4.1.2 (2021-11-01)

标签:

0 评论

发表评论

您的电子邮件地址不会被公开。 必填的字段已做标记 *